Grease Basics

The American Society for Testing and Materials (ASTM) defines lubricating grease as: ”A solid to semifluid product of dispersion of a thickening agent in liquid lubricant. Other ingredients imparting special properties may be included” (ASTM D 288, Standard Definitions of Terms Relating to Petroleum).

Grease Anatomy
As this definition indicates, there are three components that form lubricating grease. These components are oil, thickener and additives. The base oil and additive package are the major components in grease formulations, and as such, exert considerable influence on the behavior of the grease. The thickener is often referred to as a sponge that holds the lubricant (base oil plus additives).

Base Oil
Most greases produced today use mineral oil as their fluid components. These mineral oil-based greases typically provide satisfactory performance in most industrial applications. In temperature extremes (low or high), a grease that utilizes a synthetic base oil will provide better stability.

The thickener is a material that, in combination with the selected lubricant, will produce the solid to semifluid structure. The primary type of thickener used in current grease is metallic soap. These soaps include lithium, aluminum, clay, polyurea, sodium and calcium. Lately, complex thickener-type greases are gaining popularity. They are being selected because of their high dropping points and excellent load-carrying abilities.

Complex greases are made by combining the conventional metallic soap with a complexing agent. The most widely used complex grease is lithium based. These are made with a combination of conventional lithium soap and a low- molecular-weight organic acid as the complexing agent.

Nonsoap thickeners are also gaining popularity in special applications such as high-temperature environments. Bentonite and silica aerogel are two examples of thickeners that do not melt at high temperatures. There is a misconception, however, that even though the thickener may be able to withstand the high temperatures, the base oil will oxidize quickly at elevated temperatures, thus requiring a frequent relube interval.

Additives can play several roles in a lubricating grease. These primarily include enhancing the existing desirable properties, suppressing the existing undesirable properties, and imparting new properties. The most common additives are oxidation and rust inhibitors, extreme pressure, antiwear, and friction-reducing agents.

In addition to these additives, boundary lubricants such as molybdenum disulfide (moly) or graphite may be suspended in the grease to reduce friction and wear without adverse chemical reactions to the metal surfaces during heavy loading and slow speeds.

The function of grease is to remain in contact with and lubricate moving surfaces without leaking out under the force of gravity, centrifugal action or being squeezed out under pressure. Its major practical requirement is that it retains its properties under shear forces at all temperatures it experiences during use.

Applications Suitable for Grease
Grease and oil are not interchangeable. Grease is used when it is not practical or convenient to use oil. The lubricant choice for a specific application is determined by matching the machinery design and operating conditions with desired lubricant characteristics. Grease is generally used for:

  1. Machinery that runs intermittently or is in storage for an extended period of time. Because grease remains in place, a lubricating film can instantly form.
  2. Machinery that is not easily accessible for frequent lubrication. High-quality greases can lubricate isolated or relatively inaccessible components for extended periods of time without frequent replenishing. These greases are also used in sealed-for-life applications such as some electrical motors and gearboxes.
  3. Machinery operating under extreme conditions such as high temperatures and pressures, shock loads or slow speed under heavy load.
  4. Worn components. Grease maintains thicker films in clearances enlarged by wear and can extend the life of worn parts that were previously lubricated by oil.

Functional Properties of Grease

  1. Grease functions as a sealant to minimize leakage and to keep out contaminants. Because of its consistency, grease acts as a sealant to prevent lubricant leakage and also to prevent entrance of corrosive contaminants and foreign materials. It also acts to keep deteriorated seals effective.
  2. Grease is easier to contain than oil. Oil lubrication can require an expensive system of circulating equipment and complex retention devices. In comparison, grease, by virtue of its rigidity, is easily confined with simplified, less costly retention devices.
  3. Grease holds solid lubricants in suspension. Finely ground solid lubricants, such as molybdenum disulfide (moly) and graphite, are mixed with grease in high-temperature service or in extreme high-pressure applications. Grease holds solids in suspension while solids will settle out of oils.
  4. Fluid level does not have to be controlled and monitored.


Sähköpostiosoitettasi ei julkaista.